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Abstract 

Web application firewalls – WAFs for short – are a crucial component of contemporary web 

security. They are designed to protect websites from a multitude of attacks, ranging from 

exploits of the well-documented OWASP Top Ten Vulnerabilities to more sophisticated 

attacks targeting different architectures, design decisions or business flows. Traditional WAFs, 

as we have known for the past 30 years, rely on basic rule-based systems that we call signatures. 

Due to their high granularity and their stiffness signature-based WAFs can easily be 

circumvented by attackers with a wide range of techniques. To address this issue, this paper 

presents a modern solution – using machine-learning to develop an anomaly-detection based 

WAF. 

The proposed system is designed to self-learn the normal patterns of traffic and then identify, 

alert and even block deviations from those patterns which we call anomalies. To achieve this, 

the system uses unsupervised machine learning to analyze the requests and create a model that 

scores each request with a probability of it being an attack. The benefit of unsupervised learning 

is that once the initial model is deployed in production, it can continue the process by constantly 

learning and adapting to new attack patterns, including the great benefit of protecting an 

application against zero-day attacks. 

The machine-learning model is evaluated on a real-world dataset of both normal web traffic 

and attack-vector requests in order to prove its efficiency. The two metrics that matter the most 

in the evaluation are the detection rate and the false-positive rate. 

Overall, the proposed system represents an advancement in web application security, building 

on top of the knowledge of decades of traditional security systems. Using a modern technology 

provides a more robust and effective defence against the ever-growing risk of cyber-attacks.  

Keywords: Web Application Firewall × Web Security × OWASP × Cybersecurity × Next 

Generation Firewall × Deep Learning 
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1.  Introduction 
 

It is impossible in today’s age to find a business, no matter the size, that does not have an online 

presence. The rise of web sites and web applications in the past years, however, has also caused 

an ever-growing risk of cyber-attacks and security breaches [1]. Cyber criminals are working 

around the clock to find new ways of attacking anything and anyone to gain profit or notoriety. 

Such attacks range from gaining unauthorised access to the website to exfiltrate data to 

overloading the server with requests making it unable to deliver the service required and even 

encrypting the files with the intention to extort the victim into paying to regain access to their 

data [2]. 

 

Although research in web security is conducted, few papers are trying to tackle the problem by 

exhibiting a solution [3]. This paper, however, presents part of the solution, more precisely, an 

implementation of one of the many pieces to the puzzle we call cyber defence – a modern web 

application security system. Although traditional firewalls have been deployed in production 

since the 1980s [4], web application firewalls have entered the market in the late 1990s [5], 

machine learning powered web application firewalls are at the dawn of their existence, being 

brought to public attention just in the past decade. 

 

The main purpose of this paper is to establish a baseline technical knowledge for future research 

and development in this area of ML-powered Web Application Firewalls, and even by 

extrapolation be adapted for other cybersecurity products such as SIEM, Antimalware, 

EDR/XDR, IDS, NIDS, IPS etc. In unison, this paper also documents the journey of actually 

implementing a machine-learning powered web application firewall, further named ML-WAF, 

from the ground up using open-source technologies in the .NET Framework. 

 

The following chapters take the reader through a brief history and summary of the research 

conducted in the past regarding the junction of cybersecurity and machine learning, then 

present an overview of the components and the structural design and architecture of those 

components diving into the deeply technical subjects. Towards the end, the thesis discusses the 

results obtained in the study conducted while writing this paper and ends with a glance into the 

near future of this research topic. 

 

The motivation behind this subject came when I was working as a SOC (Security Operations 

Center) Analyst. More accurately I was an L1 (Level 1) SOC Analyst, which meant my main 

objective was to triage from thousands of alerts generated by multiple cybersecurity detection 

solutions only the ones that were true-positives and an actual threat to the security of the 

company I was defending. From all the around 20 IDS (Intrusion Detection System) solutions 

I was monitoring at that point in time, the one that I enjoyed the most as well as the most 

efficient one was Darktrace. Darktrace is a tool that employs mathematical methodologies to 

identify security breaches [6]. The reason I liked Darktrace the most was that it did not use the 

traditional static rules system, on the contrary, it was working on the behavioural level which 

I found a far smarter and modern way of tackling cybersecurity. 



2. State of the art 
 

The purpose of this chapter is to provide a level playing field by bringing readers who have 

never delved into subjects as technical as cybersecurity or machine learning to a level of context 

good enough to read the following chapters without needing to search terms or concepts on 

google every couple rows. The following sub-chapters will display a brief crash-course into 

the context of cybersecurity and machine learning on the high-level non-technical side. 

Experienced technical individuals are also advised to walk through the chapter for a quick 

refresher. 

 

2.1. Cyber-attacks landscape 

 

The increase in cybercrime is undeniable. According to an article published by AAG – an IT 

company which regularly centralizes cybercrime statistics – the numbers are astonishing. 

Malware attacks increased by 358% compared to 2019, a colossal increase that can be 

explained by placing it in the context of the pandemic which took by surprise the network and 

IT sides of businesses just as much as any other department. The need to work remotely forced 

companies to open themselves to more risk and those that had no prior experience with VPNs 

or did not have the personnel skilled to ensure the security of such a vital component suffered 

great losses, both reputational and financial. Other striking statistics are more than 50% of US 

citizens were affected by cyber-attacks in the beginning half of 2022, 39% of UK companies 

reported suffering at least one attack in 2022, and one of the most dangerous and feared attacks 

– the ransomware attack – reached an aggregate of 236.1 million reports [7]. 

 

The European Union Agency for Cybersecurity (ENISA) issues an annual report named 

ENISA Threat Landscape (ETL) on the state of the cybersecurity threat landscape. The key 

conclusions from the 2022 report [8] are: 60% of organisations hit by a ransomware attack may 

have paid the ransom demands; 66 zero-day vulnerabilities were observed in 2021; phishing 

remains one of the most popular techniques used in cyber-attacks; the largest ever DDoS 

(Distributed Denial of Service) attack was recorded in Europe in July of 2022.  

 

 

2.2. Cybersecurity Research 

 

Although those figures spark fear in the mind and heart of every cybersecurity professional, 

should also motivate them alongside researchers to invest more and more time in understanding 

the trend and landscape of cyber-attacks and cyber defence. A research published by IEEE in 

2019 showed that between 2015 and 2019, the community has collectively published 201 

papers that had the words “cybersecurity” or “cyber security” in the title [9]. Considering that 

a substantial amount of papers that tackle cybersecurity topics do not even contain those 

keywords in the title, I decided to check ResearchGate, a very popular website and social 

network that indexes published papers. ResearchGate returns 11.382 publications composed of 

articles, preprints, conference papers and literature reviews, however checking the “Cyber 



Security” topic reveals 106.346 publications [10]. Despite the fact that it can be a very 

challenging task to accurately compute the amount of papers addressing cybersecurity or 

adjacent subjects, it is not as difficult to observe that the interest of academia in this matter is 

at an all-time peak and still growing. 

 

 

2.3. Web Defence Mechanisms 

 

The wide variety of cyber-attacks is counter-attacked by a diversity of defence solutions, tools, 

and mechanisms [11]. They play distinct roles in different layers that when working together 

compose the concept of “Defence in Depth” – also known as the Castle Approach [12]. The 

most frequent roles a security solution ensures are detection, prevention, reconnaissance, 

management, proxy, hardening, patching etc. The strategy behind this concept is that when 

one, or even multiple layers, fail, the others serve as a back-up, greatly increasing the chances 

of the attack to be at least mitigated and in the best-case scenario, altogether stopped. The Web 

however is inherently a predominant layer 7 protocol, as such this paper will only focus on the 

application layer security, starting from the assumption that every layer below it is properly 

configured and protected. 

 

With this assumption in mind, a 2012 paper by Yousaf, Iftikhar, Javed and Tahir states that all 

web applications are divided into three inter-related phases. Those phases are: 1) 

Authentication phase, 2) Session Management phase and 3) Data Access-Control phase [13]. 

I, however, do not think this model is optimal, because, even though it encompasses most of 

the attacks, it is impossible to map some attacks or vulnerabilities to this model. Such 

incompatible vulnerabilities are: Cryptographic Failures which are independent of phases or 

Security Misconfigurations, which happen way before the first phase is initialised, such 

vulnerabilities being prone to an attack without even accessing the application. One such attack 

is a man-in-the-middle (MITM) attack exploiting a missing HSTS header. An attacker can 

intercept a legitimate request and redirect it to a cloned website acting as a credential harvester. 

As it can be seen from this example, the original application did not even get a chance to apply 

the first defence mechanisms which would have been mapped in the Authentication Phase. The 

two incompatible vulnerabilities were not randomly chosen, as they are numbers two, and five 

respectively in the OWASP Top 10 [14]. 

 

 

2.4. Introduction to Web Application Firewalls 

 

Dr. A Shaji George and A.S.Hovan George define a WAF in their study as “a dedicated firewall 

intended for filtering and controlling HTTP traffic through internet traffic between the web 

clients as well as application servers” [15]. WAFs operate at the OSI Layer 7, the top-most 

layer, offering application-level security using packet-inspection. In order for it to be able to 

prevent attacks, such a solution must be implemented in-line, meaning it must also serve the 



function of a proxy that is able to forward the packets to the destination, or drop them if they 

are detected as malicious.  

 

The main purpose of the WAF is to safeguard a web application from web requests that aim to 

exploit web vulnerabilities, however in recent times, those firewalls have evolved to offer 

multiple functions such as load balancing, reverse proxy, SSL inspection, DDoS protection and 

autonomous intrusion prevention. Considering all the functionalities previously mentioned, the 

benefits of using a Web Application Firewall in front of publicly exposed web applications are 

clear: they offer an organization security by ensuring the CIA triad (Confidentiality, Integrity, 

and Availability), reliability, compliance by fulfilling the necessities required by industry 

regulations and standards, risk reduction, improved performance and real-time monitoring and 

reporting. Overall, Web Application Firewalls have become a necessity for every company that 

has public websites, or web applications served over the internet, and their use will increase as 

long as the internet becomes more complex, and attackers become more sophisticated in their 

methods of targeting the web.  

 

 

2.5. Machine Learning Research 

 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on the 

development of algorithms and models that enable computers to learn from labeled or 

unlabeled data called training data without being explicitly programmed to do a particular task 

or to obtain a desired result [16]. In recent years, machine learning has become a valuable tool 

in various domains, including computer vision, natural language processing, speech 

recognition, and nonetheless cybersecurity [17]. ML algorithms are usually mainly grouped 

into three broad categories: supervised learning, unsupervised learning, and reinforcement 

learning. 

 

In supervised learning, the algorithm is trained on a labelled dataset, where each data point is 

associated with a target output value. The goal is to learn a function that maps input data to the 

correct output values. Common supervised learning algorithms include linear regression, 

logistic regression, decision trees, and neural networks [18]. For the scenario proposed in this 

paper, this technique of learning without supervision is the desired one, as a normal web 

application can have up to hundreds of requests per second. If this number sounds high to you, 

think about all the bots and the crawlers scattering towards all the edges of the World Wide 

Web. 

 

In the context of cybersecurity, machine learning can be used to detect and prevent several 

types of attacks, including malware, network intrusions, and web-based attacks. For example, 

machine learning algorithms can be used to analyse network traffic and identify anomalous 

behaviour that may indicate a cyberattack [19].  

 



Overall, machine learning is a powerful tool in the field of cybersecurity, having the potential 

to enhance the accuracy and efficiency of various cyber-security activities. However, there are 

also challenges and limitations associated with the use of machine learning in security, 

including the need for enormous amounts of labelled data, the risk of adversarial attacks, and 

the potential for bias in the algorithms. Addressing these challenges will be a key area of future 

research. 

One particular application of machine learning in cybersecurity is the development of machine 

learning-based web application firewalls (ML-WAFs). These systems use machine learning 

algorithms to analyse web traffic and detect anomalous behaviour that may indicate a web-

based attack, such as SQL injection or cross-site scripting (XSS). ML-WAFs have been shown 

to be effective in detecting and preventing attacks, including zero-day attacks that are not 

detected by traditional signature-based approaches. Such a particular implementation of 

machine learning will be the central topic of this paper. 

 

 

2.6. Self-Learning and Anomaly Detection in Web Application Security 

 

Since a rule-based approach is no longer able to keep the pace with the unlimited ingenuity of 

attackers, the blue-teams have started applying machine learning techniques in order to fight 

the attacks of the black-hat hackers. Rule-based defences are obsolete because they are easily 

bypassed and circumvented with low-skilled obfuscation techniques such as: case toggling, 

encoding, junk characters, wildcards, line breaks, token bearers and many more. A rule-based 

tactic is losing the fight because it is reactive by-design, you need to know what the payload 

looks like to create a rule that detects it. This opens the door for the obfuscation techniques 

mentioned above and to a much bigger threat that the community calls “zero-day attacks”. 

Zero-day attacks are attacks that are not detected by any defence solution because it was until 

that point not learned by the developer. In other words, if the attacker discovers a new vector 

attack that did not cross the minds of the security and development teams, there is no rule 

created to detect that threat and it will easily go past any defence hops put in place. 

 

By introducing machine learning and anomaly detection techniques in our security products, 

we change the whole paradigm from detecting what is known to be malicious to detecting 

everything that is outside the normal behaviour. Having in mind this new paradigm the reason 

machine learning powered security solutions combat zero-day attacks considerably more 

effective is straight-forward: a zero-day attack is by definition an outlier to the expected 

conduct. In the research conducted for this paper, I have found the work presented in [20] to 

be a great resource, centralizing the research made in the Deep Learning Network Traffic 

Monitoring and Analysis area. Also, the article in [21] is a great resource for understanding 

how Neural Networks can be trained to detect web attacks embedded in HTTP requests. It also 

uses the CSIC 2010 Dataset that will also be a part of the learning data used by this paper. 

 

  



3. Architecture 
 

The following sub-chapters will display multiple specialized diagrams that will also be talked 

on to provide technical details into the solution's architectural design.  

 

 

3.1. Overview 

 

Figure 1 shows the flow of the implementation on a high-level together with the main 

components built in the system architecture. 

 

First, we can establish the fact that there are two decoupled systems that communicate over an 

API, the WAF component and the ML component. The reason for which those two are 

decoupled is because they can work without each other and they serve two different purposes, 

however, it is decisive that the two cooperate to serve together as a Machine Learning powered 

Web Application Firewall (ML-WAF). The WAF component acts as the central piece in the 

architecture providing all the necessary services for the Client-Server communication to be 

both functional and secured. The Machine Learning Engine on the other part is totally 

decoupled from the Client-Server communication, playing however the crucial role of deciding 

if the web request initiated by the client will get to the server or not. This component is exactly 

the particularity separating an ML-WAF from a traditional WAF, meaning if the Machine 

Learning Engine fails to provide a decision (block or allow the traffic), the WAF component 

only functions as a proxy, or a reverse proxy and the only security features provided being that 

it hides the true IP Address of the web-server and it enforces encryption. 

 

Figure 1 - Overview Diagram 



The second key point that stands out from Figure 1 is the fact that step 4 is split depending on 

if the MLE (Machine Learning Engine). If the request is not considered malicious, the process 

flows as if there was nothing in-between the client and the server, however, there is a design 

choice for the case in which the request is detected to be anomalous. The design choice to be 

made is what the WAF should return in this case. One path that can be taken is simply dropping 

the whole connection, showing the user an error screen or a warning, this however comes at 

the consequence that an attacker can learn about the technology behind the security solution he 

is fighting. Although, of course, security by obscurity is not a good concept, neither is being 

too transparent. Following this stream of thought, a new concept is being explored in the 

cybersecurity industry which is called “deception”. The purpose of deception is to fight-back 

the attacker, attempting to make it harder for enemies to circumvent security solutions and 

controls put in place by the defenders. Such technologies deceive malevolent users by setting 

traps and decoys to imitate genuine assets or behaviours. The main advantage of using such 

techniques is logging and monitoring the attack vectors utilized throughout the engagement to 

learn more about the indicators of compromise, the TTPs (Tactics, Techniques and Procedures) 

and the novelties of the black-hats and improve defences. Other important advantages are 

reducing alert fatigue, increasing the chances of catching an attacker after the initial 

compromise and access to the network and increasing the time window for incident response 

actions such as isolation, quarantine etc. Going back to the WAF in question, the path chosen 

for the case of an anomalous request is to throw in a deceptive response. That can be configured 

to either have cached deceptive responses that are sent back to the client, or it can be arranged 

to redirect the communication to a honeypot. A honeypot is another cybersecurity deception 

technology represented by an application that is designed to look like a vulnerable system or 

service in production. The catch of course is that this honeypot is isolated from the real 

production environment, and it only stores bogus data. 

 

In the following chapter, Chapter 3 – Implementation, the steps from Figure 1 will be 

individually dissected and analysed to provide more context and technical details regarding the 

complete process. This first figure is thought and designed as a business-oriented diagram to 

help non-technical people understand the structure and purpose of the solution. 

 

  



 

3.2. Technical Architecture 

 

Figure 2 represents an activity diagram for the normal flow - the one where the request is 

determined to be legitimate; it is built on top of the overview diagram but explaining more in-

detail the process. The observation that stands out the most in the activity diagram is the async 

box on the 2.2 step. It can be remarked that the async steps happen between the evaluation 

score being returned to the WAF and the request being proxied to the target server. This means 

that the machine learning model being updated and retrained is decoupled from the system. 

The decoupled-ness property can also be perceived directly from the diagram by noticing how 

step 2.2.4 ends the flow that does not rejoin the main flow that goes all the way back to the 

User Browser component ending with step 4. 

 

 
Figure 2 - Activity Diagram 

 

Figure 3 signifies a Network Architecture Diagram for an enterprise implementation scenario. 

It depicts two clients connecting to two target servers hosting two web applications resulting 

from the TCP 80 / TCP 443 requests shown. Between the clients and the enterprise network 

are a Border Router (OSI Layer 3) and one Core Switch (OSI Layer 2). It is worth nothing the 

fact that between or around those elements may be other intermediary hops such as security 

solutions like border firewalls, NIDS/NIPS solutions or other network-related components 

such as additional switches, routers, VPN servers, AD Domain Controllers etc. The purpose of 

this diagram is not to show a complete network diagram, but to suggest an overview of the 

infrastructure needed to employ such a solution and how it fits in the already existing scenario 

of the network. 

 



 
Figure 3 - Network Diagram 

 

The more interesting discussion points arise from noticing the two distinct WAF instances 

deployed in the diagram. This is the best practice as having different hardware for each instance 

brings huge performance benefits, however it also means increasing the capital and the 

operational costs. Of course, those distinct WAFs do not necessarily need to be on different 

hardware, as using virtualization solutions the two different IP addresses might not mean 

different hardware, but different virtual machine or docker container instances. In the worst 

case two WAF applications could run on the same hardware, without virtualization even, but 

it would need to have different destination ports configured at the application level, that also 

match the destination ports of the targeted web server. 

 

Another important observation is that the ML-API and the MLE are only hosted on one 

hardware each, no matter the number of applications thus WAF instances. That is because the 

connection to those two components is done asynchronously and in a decoupled manner, so 

the performance and latency does not affect the flow of the client-server communication. One 

justification that must be clarified is the need for only one MLE even though there are multiple 

applications with multiple use-cases and expected behaviors. The reasoning behind the only 

one MLE instance is that the distinction between the applications is made at the model level, 

not the MLE. The Machine Learning Engine is only concerned with data processing, so it can 

handle multiple applications if it is told to which model, i.e., which application to update aka 

re-train. 

 

3.3. Used technologies 

To get the best of a performance throughout the system I had to choose a technology stack that 

offered great coordination between the components and sub-systems. The optimal solution that 

I found was to use the .NET Framework to build every component, meaning, the WAF, the 



ML-API and the MLE. Even though individually they are not the most efficient or well-

performing, for example a far more efficient in regard to time and memory TCP proxy could 

have been built using plain C or C++ rather than C# and the .NET framework [22]. However, 

the big plus of the .NET choice is that it presents smooth communication between all 

components as they are built using the same programming language, framework, and common 

libraries. This saves a lot of time in development, post-development debugging and future 

component additions. For example, a web-based or even native application to act as a 

management console, or even a UDP equivalent proxy could be added seamlessly using the 

tools provided by the .NET Framework. 

 

To be more precise, the technologies within .NET used to develop the components are as 

follows: for the WAF, the System. Net namespace libraries [23] were extensively used to write 

a TCP proxy using sockets and to provide an HTTP middleware. The ML-API was developed 

using ASP.NET Core [24] and the MLE is based on the ML.NET [25]. 

 

As will be mentioned in the following sub-chapter ELK was also used to provide a presentation 

layer for marketing or technical PoC reasons. 

 

 

3.4. Additional components 

This sub-chapter's purpose is to approach the architecture of the additional components 

developed around the solution. The reason behind those components being named “additional” 

and being approached separately is that they are not in the scope of the ML-WAF solution, 

instead they are used as a control-center to visualize the data, store it to be data-retention audit 

approved etc.  

 

The additional components are known as the Elastic Stack or ELK for short. According to 

Elastic, the developers, ELK is “a fast and highly scalable set of components – Elasticsearch, 

Kibana, Beats, Logstash, and others - that together enable you to securely take data from any 

source, in any format, and then search, analyze, and visualize it.” [26]. Elastic, this way, 

provides a full stack for creating a control center dashboard style web app. This is a fantastic 

opportunity for this paper’s use-case as this web-app is outside the scope of the study, but it 

offers a wonderful way to present the solution in a PoC (Proof of Concept) way. The data from 

the ML-WAF is imported in the Elastic Search ingest pipelines, indexed, and analyzed by the 

Elasticsearch and Logstash components and then presented in a web application by Kibana. 

Figure 4 presents the architecture flow and the role of each sub-component. 

 



 
Figure 4 - Components of the Elastic Stack [26] 

 

Elasticsearch is a NoSQL database, meaning it indexes and stores data in an unstructured way. 

More accurately the data is stored in the form of JSON strings. We will not go into the details 

of Elasticsearch’s more advanced concepts such as indexes, mappings, shards, replicas, and 

nodes. The crucial point to be made is that the data is not stored in a SQL manner, so that SQL 

Queries will not work. Elastic provides a query DSL (Domain Specific Language) to be used 

in queries and data analysis on the JSON raw data stored. The ingestion of the data from the 

ML-WAF to the Elasticsearch database is made via the CSV import functionality. Elastic offers 

a File Data Visualizer feature that allows the uploading of different file formats and the 

transformation of that data into Elasticsearch compatible formats. Logstash and other 

processors can also optionally be used to enrich the data.  

 

 

 
Figure 5 - HTTP Request Elasticsearch Document Schema 



Figure 5 is an entity diagram for the only Elasticsearch document used. A document in 

Elasticsearch is the equivalent of a table in SQL databases.  

 

The _id field is marked as PK (Primary Key) and is automatically assigned by Elasticsearch 

for each entry to uniquely identify the documents. This field is not a proper primary key, as we 

are not dealing with a SQL database so that is not a concept applicable in this context, however 

it does serve the role of uniquely identifying an entry and can be used in queries. The rest of 

the fields are related to the HTTP Request or adjacent information such as client IP, probability 

score assigned by the machine learning component and the status code returned by the server. 

The “was_blocked” field is necessary as the threshold can vary from appliance to appliance, 

so the field is not redundant.  

 

 

 

 

 

 

  



4. Implementation 
 

In the following subsections the steps from Figure 1 will be individually dissected and analysed 

in order to provide more context and details about the complete process of the development. 

 

 

4.1. HTTP/S Request sent to WAF 

The first step of the process of course is sending the client web request to the WAF application. 

The low-level networking details will not be covered in this paper as they are not relevant to 

the subject. For example, in the case of HTTP/S requests we will skip the TCP 3-way 

handshake process and all the other OSI layer 4 specific functionalities. We will concentrate 

our efforts on the OSI Layer 7 – the Application layer. 

 

To go more in-depth with the technical details of the TCP proxy side of the WAF, a 

System.Net.Sockets.TcpListener was used to listen and accept incoming connections from the 

internet. The TcpListener can accept multiple async connections so it is scalable, and it can be 

multithreaded to improve performance. For every connection accepted by the TcpListener, a 

System.Net.HttpClient is instantiated for the WAF to proxy the requests to the target server. A 

separate package-level HttpClient is instantiated in the Main method, so at the boot of the WAF 

application that runs as the MLE API Caller. This client is responsible for sending API requests 

to the machine learning API to obtain the probability score for the said request. 

 

The first problem the WAF might encounter arises as soon as the very first packet arrives. In 

the case of an HTTP request there are no problems, however if the request was sent using the 

HTTPS protocol, it means that the data is encrypted using TLS or SSL. It is obvious that the 

WAF cannot just proxy the encrypted packets to the server or try to send it to the MLE in its 

encrypted form because it would not be able to truly analyse the request and accurately decide 

regarding the legitimacy of the request. Considering this problem, the first functionality the 

WAF must implement is called “SSL Inspection”. 



 

Figure 6 - SSL Inspection 

 

SSL Inspection as it can be seen in Figure 6 is a cybersecurity technology that allows solutions 

to examine traffic encrypted using SSL/TLS protocols. Attackers can use the encryption 

provided by those protocols to either hide malicious ingress actions such as malware 

downloads, command and control communications or egress traffic such as data exfiltration or 

lateral movement payloads. The SSL inspection process involves intercepting the encrypted 

traffic, decrypting it, analysing the clear-text data, and then re-encrypting the data for it to be 

sent securely to the destination. The content inspection can take many forms including content 

filtering, data loss prevention, malware detection, compliance enforcements etc. This 

technology, even though it provides a very-much needed security level, it also raises some 

privacy and legal concerns involving GDPR, CCPA or other applicable laws and regulations 

[27]. 

 

The SSL inspection is possible because the connection is not directly between the client and 

the server, on the contrary, there is no connection between the two machines. This client-server 

connection is simulated by the proxy component of the WAF. There are, in fact, two separate 

TCP connections, one between the client and the WAF and another one between the WAF and 

the server. There is however a method to implement SSL inspection in the configuration where 

the TCP connection is between the client and the server directly in which the WAF only relays 

the packets. The way to implement SSL inspection in this scenario is by having a known server 

key, meaning the WAF has a copy of the private key and the server certificates. This 



implementation however creates complications in the transport, storage and securing of those 

secrets. 

 

The SSL/TLS session keys used to decrypt and reencrypt HTTP/S can be obtained on 

Windows/Linux/Mac by using the SSLKEYLOGFILE environmental variable. The 

SSLKEYLOGFILE is a text file generated by web browsers and web servers where session 

keys are logged for future decryption in network traffic or security analysis. A step-by-step 

procedure for logging those session keys on each of the platforms can be found on this website 

[28]. In order to provide improved security those session keys will not be stored more than 

strictly needed. The keys will be deleted from the WAF after the session is terminated as they 

are no longer needed considering a new session will not re-use the previous key. 

 

 

4.2. API call to the Machine Learning Engine 

The decrypted request must now be sent to the core function of the ML-WAF, which is the 

anomaly detection done by the Machine Learning Model. Of course, machine learning models 

cannot understand HTTP/S requests as they are either words or binary representations which 

means that the data must be transformed into a format that a machine learning engine can 

understand and process. This transformation will be covered and explained in the following 

sub-chapter where the whole machine learning engine will be discussed, the only detail relevant 

to this step is that the payload will be transformed into a vector [29] that will be sent to the 

MLE.  

 

One point worth mentioning is that the WAF and the MLE do not necessarily need to run on 

the same machine or appliance. Depending on the load of the target web application, the 

network it is installed on, the budget and many other factors a design choice must be made 

when configuring such a solution. The WAF and MLE can run on the same machine and 

communicate on the loopback interface using different ports, which reduces latency and 

networking issues, but it also increases the CPU and memory loads significantly. The pros and 

cons are reversed if opting to run the two components on separate machines. 

 

One might notice on the Overview diagram showed in Figure 1 that step two has also an async 

action which happens inside the MLE component. This async activity refers to adding the 

knowledge from the request that is sent for analysis to the machine learning model in a feedback 

loop manner. This ensures continual learning to keep the WAF up to date with the newest 

attacks but also for it to always have an accurate view of what the normal or expected behaviour 

is. As web applications are constantly being updated new functionalities are being released or 

existing ones are modified for better user experience or performance. This constant change 

must be mirrored in the WAF, so this persistent re-learning is crucial for the solution on the 

long-term. 

 

The format of the API call is an HTTP/S request to the following URI format: 

 



𝒉𝒕𝒕𝒑𝒔://𝑴𝑳𝑬_𝑰𝑷:𝑴𝑳𝑬_𝑷𝑶𝑹𝑻/𝒑𝒓𝒆𝒅𝒊𝒄𝒕/𝒎𝒐𝒅𝒆𝒍_𝒊𝒅 

 

The model_id is an integer value uniquely identifying the machine learning model that is being 

used for the particular application being defended. The response of the API is a simple HTTP 

Response with status code 200 with the body being a single float number encoded in ASCII 

representing the probability of the request that was send for prediction to be malicious. 

 

 

4.3.  Decision callback 

This section will skip the actual work of the MLE as it will be discussed in the machine learning 

chapter. For now, we will consider the MLE as a black-box that generates yes or no – 

anomalous or normal – responses to our API call that contains the initial app client request.  

 

The anomaly detection machine learning model is a binary or continuous score that indicates 

the level of anomalousness for the given input sample. A threshold can be decided upon 

depending on the requirements, needs or preferences of the implementer. This threshold refers 

to the value of the anomalousness beyond which a request will be classified as malicious. 

 

 

Figure 7 - FPR and FNR 



This implementation decision can be understood by studying a graph such as the one seen in 

Figure 7 [30]. In short, the higher the value of the threshold, the more outlying the request must 

be from the expected pattern. A high threshold results in more False Negatives (FN) – 

malicious requests that the WAF will let through which increases the risk of a security breach. 

A low threshold on the other hand will impact production and the end-user experience as any 

slight, minuscule change from the usual request will be blocked. We call those legitimate non-

malicious requests that are blocked False Positives (FP). Finding the balance between FP and 

FN is an exceedingly challenging task especially as there is no correct value for the threshold. 

A risk assessment must be conducted to apply the threshold value taking into consideration 

many factors. A banking application will most of the times have a much lower threshold than 

a web-based game as banks are often more regulated and have a much lower risk appetite not 

wanting to endanger money or reputation. 

 

To clarify this even further, for the use-case in Fig. 5 the most effective threshold value 

mathematically calculated is 0.616 (61.6%). This threshold value will on average produce an 

error of 6% or one error in every 17 decisions. Even though this is the best value for the 

threshold to achieve balance and minimize the error rate, this might not be the best value to 

choose. Following the online banking application scenario, a one-in-seventeen chance of being 

hacked will probably be considered too risky and so a higher value for the threshold will be 

chosen. For example, for a threshold of 0.7 the false-positive rate will be close to 0, however 

the false-negative rate will also grow to 12%. 

 

The actual threshold value is set in the WAF component not at the machine learning engine 

level; thus, the response is the probability. This design choice is made to provide more 

flexibility and opportunity to develop around in adjacent components. The other side of this 

coin would have been simply returning a binary or boolean value, such as block or do not block 

aka. Malicious or non-malicious. The additional advantages of returning the probability instead 

of the result of the prediction is that other components can use this value. Examples of usages 

are statistical analysis – a simple boolean result would not have provided much insight into 

how dangerous the request is. We can agree that there is a difference between a request getting 

the score of 98% malicious versus a request that is considered 51% malicious. In a scenario 

where the threshold is set to 50%, they would both be considered equally dangerous. Another 

advantage is that the probability could be used in human analysis triage. Let us assume that 

every morning a human security analyst looks through all the requests blocked by the WAF 

over the course of a set period of time. This action could be done for threat hunting, OSINT 

publishing or simply for reporting purposes. A human will need to triage and prioritise those 

events in a scenario where there are too many to require attention. This prioritization could 

prove quite challenging when not having available a numerical value to sort upon. The 

probability being made “public” throughout the components gives such a scenario a field to be 

used by analysts in a tier-1 operations centre. The probability score can also be used in other 

security solutions in the network such as a SIEM or an EDR that is running on the same 

machine as the WAF or even on the target server. 

 

 



4.4.  Honeypot response 

If the callback from the MLE resolves as malicious than following the flow described in Figure 

1 the WAF will send a deception response back to the initial client. Deception response is a 

strategy used in cybersecurity to actively mislead and deceive detected attackers. As it was 

previously mentioned there are multiple ways to assemble such a response however the details 

are not relevant to the subject at hand. One common implementation that is also facile to our 

implementation is the integration with a honeypot. The implementation is as simple as 

changing the destination IP from the real web server to the IP of the honeypot web server. It is 

recommended that the honeypot emulates the real application as well as possible for optimised 

results. The best way to implement a honeypot is to share the same frontend and backend, but 

to be connected to a separate database with bogus data and isolated in a separate VLAN to 

mitigate the risks of lateral movement. 

 

The advantages of using such a strategy include: the longer the WAF can mislead the attacker 

into believing they are still attacking a real target the more telemetry it can gather which can 

be used to further reinforce its defence knowledge. The best scenario, for example, is catching 

a zero-day attack being used against a honeypot as it can be used to write rules for traditional 

defence solutions without suffering any damages. The concept of zero-day attacks was 

explained in sub-chapter 1.2.6. ￼ Self-Learning and Anomaly Detection in Web Application 

Security. 

 

Moreover, all the resources the attacker spends on striking a fake application are resources that 

are not used on the real threat. In addition to those great benefits the deception also comes in 

to help the operational component of a company, providing more time for the security team to 

respond and contain the possible incident. 

 

This honeypot idea can be levelled-up even further by expanding to the honeynet concept. A 

honeynet is simply put an isolated part of the network containing one or more honeypots. A 

honeynet however is much more expensive in terms of time to set-up and maintain and in terms 

of resources needed. Usually, honeynets are only used in very cybersecurity mature 

organizations that have already deployed all the other simpler cybersecurity solutions and 

services such as SIEMs, EDRs, network sniffers and a fully functioning SOC. 

 

 

4.5.  Sending the response back to the client 

The last two steps will be covered in this one subchapter as it is only technically split into two 

separate flows because the response must be hopped through the WAF on its way back to the 

client. This hop however can be a good thing in the end as the WAF can use its proxy function 

to do proxy caching. Proxy caching is a mechanism in which a proxy server stores copies of 

content previously requested by other clients and responds on behalf of the origin server 

without consulting the server. This saves CPU cycles, memory and disk I/O operations on the 

origin server and bandwidth and latency at the network level. The connection ends with the 



WAF sending the response, either cached or obtained from the origin server to the client that 

initiated the request. 

 

One important implementation detail that needs to be documented is the method used to be 

able to return the response to the correct client. The WAF operates as a reverse proxy, thus it 

hides the real server IP, but that also means that the web server “sees” the client as being the 

WAF even though the real client is behind that WAF. To be more explicit, if the web server 

only relies on the TCP data sent by the WAF, the response stops at the WAF and the WAF will 

not have stored the real client – which now should be the destination of the response. To solve 

this problem, the proxy inserts a new header into the HTTP/S headers. This header is called X-

Forwarded-For (XFF), and it stores the originating IP address of the client connecting to the 

web server through the proxy. It is also particularly important to note that any intermediary 

device that processes the request must append its own IP address to this header. Additional 

such devices might include NIPS (Network Intrusion Prevention Systems), normal internal 

proxies, etc. 

 

Another relevant security point is that the header can be easily spoofed. This is a well-known 

problem in the industry, but it cannot be mitigated by the WAF. The vulnerability appears when 

the network is not properly defended, and a man-in-the-middle attack might be happening 

unrelated to the WAF flow. 

 

 

4.6.  Machine Learning Engine 

The technology behind the Machine Learning Engine is the ML.NET, an open source, cross-

platform machine learning framework built on top of the .NET backbone that enables 

developers to easily build machine learning models using existing C# and .NET skills. To 

simulate the initial “learning stage” period, a TSV (Tab-Separated Values) file containing more 

than 38000 requests manually labelled in a binary-classifier manner (0 for not malicious, 1 for 

malicious) was used to train the initial model. Additionally, the WAF can be left running while 

browsing through the application simulating normal behaviours can be used to further help the 

machine learning algorithm create the baseline model that then can be deployed in production. 

 

As it was previously touched in the earlier sub-chapters, one of the most important processes 

is transforming the HTTP/S request into a format that can be used by a machine learning 

algorithm. The HTTP/S requests naturally come in either ASCII text format for HTTP version 

1 and 1.1, and in binary format for HTTP version 2. None of these formats are understood and 

can be used by machine learning algorithms, so the process of transforming text into machine 

learning friendly language is called Text Featurizing. The larger concept of machine learning 

models understanding and analysing textual data is NLP or Natural Language Processing. Text 

featurizing is a technique in which text is transformed into numerical features in the form of 

vectors which can then be processed using mathematical and statistical operations to analyse, 

classify, find patterns, and extract insights from the input. Text featurizing can be done in a 



multitude of ways, such as Bag-of-Words (BoW), Term Frequency-Inverse Document 

Frequency (TF-IDF), Word Embeddings, etc. 

 

The default method used in ML.NET and the way the machine learning in our example was 

built is using n-grams. N-grams are contiguous sequences of a number n of terms extracted 

from the initial string. They are great at capturing local-level context and can help machine 

learning models to understand the connections and links between nearby words. The features 

are made of such n-grams. The result of the FeaturizeText function is a vector of float values 

representing normalized counts of n-grams. 

 

The machine learning algorithm that powers the MLE behind the WAF is known as SDCA 

Logistic Regression, where SDCA stands for Stochastic Dual Coordinate Ascent. SDCA 

Logistic Regression is an optimization algorithm used for solving large-scale linear and logistic 

regression problems [31]. Logistic regression has been used for many years in binary 

classification problems where the goal is to predict the probability of a statement being true or 

false. The SDCA algorithm works by minimizing a convex loss function by iteratively by 

randomly selecting a coordinate, updating its dual variable and them the primal variable 

accordingly in a stochastic fashion. The iterations are being repeated until convergence is 

achieved or until a maximum number of iterations calls a timeout. One of the advantages of 

SDCA logistic regression is that it is well-suited for large-scale datasets because it processes 

one data point at a time, which reduces memory requirements. Additionally, it can handle both 

sparse and dense data efficiently. One exceptionally good article [32] was written by Zhang 

and Shalev-Schwartz that goes very deep into the mathematics and statistics of the SDCA and 

has been a great aid in choosing and understanding the algorithm that is the engine of the ML-

WAF. The details of the algorithm implementation and variables that must be minded are very 

well presented in the Microsoft official documentation [33]. 



 
Figure 8 - Convergence of SA-SDCA for different number of threads [34] 

 

Another great advantage of the SDCA algorithm is the fact that it was proved to handle scaling 

very well. The article at [34] provides an amazingly well-done study and experiment that 

demonstrates the impressive performance boost obtained by multi-threading the algorithm. 

Figure 8 taken from the same article is displaying the training type and number of passes 

improvements going from a single-threaded approach to multi-threading and increasing the 

number of threads. ￼ 

5.  Results 
 

 

5.1. Machine Learning Model Results 

The ML.NET Framework that was used to build the Machine Learning offers a built-in class 

for metrics that are used to evaluate trained models. It calculates statistical values such as 



Accuracy, F1 score and Recall but also offers an amazingly fast way to obtain and see the 

Confusion Matrix. Figure 4 shows the results obtained from training the MLE model on 38297 

entries from the CSIC 2010 HTTP Dataset [35]. Figure 4 presents the results returned by the 

Evaluate function in ML.NET after training the model splitting the dataset into 80% training 

data and 20% testing data. 

 

Figure 9 - Model quality metrics evaluation 

 

Figure 9 shows that the model correctly classified 99.25% of the test data HTTP requests, 

indicating a remarkably high performance. Moreover, by analysing the Confusion Table we 

can see that the percentage is given by 58 out of 7691 requests that were mistakenly classified 

as negative instead of positive. It is important to state before discussing more on this confusion 

matrix that the positive values are malicious requests and negative values are legitimate 

requests. 

 

One thing to notice is that all the failed predictions were false negatives meaning all the 

mistakes classified the request as being legitimate when it was a malicious request. This should 

give an indication that the model tends to let malicious requests fly under the radar rather than 

blocking legitimate requests that are suspicious. This false negative allowing bias can be a 



problem to certain scenarios such as banking applications that may want to be stricter and risk 

blocking legitimate transactions rather than allowing frauds to happen. 

 

The model bias can be however easily countered in the WAF component by tinkering with the 

probability threshold. By changing the threshold, the WAF can require a higher or a lower 

probability of maliciousness to block a request. The area under curve metrics shows an 

exceptionally good discrimination power and an excellent precision-recall trade-off balancing 

identification of positive or malicious requests with minimizing false positives. The F1 Score 

is also confirming the good balance between precision and recall. 

 

Overall, the model has high performance across multiple metrics, indicating its effectiveness 

in correctly identifying both positive and negative samples. However, it is important to evaluate 

the model's performance on external data to ensure its generalizability. When it comes to the 

positive-negative discussion there is one limitation of the model that must be mentioned. In the 

context of cybersecurity, a benign result is where a security solution detects as malicious a 

legitimate activity. The difference between a benign and a false positive is that the false positive 

case is triggered by a misconfiguration, a wrong rule or bad training, a benign result is both a 

legitimate request and an activity that the security solution should detect as malicious. 

 

One simple example to help understanding benign results is a “drop all tables” query that was 

legitimately executed by a network administrator on a test database schema. Dropping all the 

tables in a database is a malicious activity as it can lead to data loss and application denial of 

service, however in the context of a network administrator clearing space in a test environment 

that is a legitimate behaviour. This problem is one of the hardest to tackle in cybersecurity as 

it requires an incredibly good understanding of context, which machine learning tend to 

struggle with especially in low quantity training data scenarios. This limitation for the WAF 

will have maximum impact in the training stage and in the first period of usage, the 

backpropagation and continuous learning will in time help reduce the problems caused by 

benign results. 

 

 

5.2. Performance Results 

 

Another discussion of great interest in the case of implementing a Web Application Firewall, 

especially if it implies content analysis using machine learning, is the impact this new 

component has on the performance of the network. Forever since the development of security 

countermeasures the tradeoff between performance and security was a very debated topic. 

While providing a secure environment for the consumer, so is keeping the user experience as 

close to untouched as possible, for if a website is very secure but takes too long to load and 

operate, the business will be impacted. This is as true as ever considering we are living in a 

consumerism-based age and a period when not even gigabit speed internet is fast enough 

anymore. 

 



Website speed tools such as Google PageSpeed Insights or Pingdom and many others were 

developed in order to test the performance of the website and of the infrastructure (web server, 

network etc.). Those tools calculate a score based on an average of timed tests such as page 

speed, page load time, blocking time, time to interactive etc. According to a New York Times 

study from 2012 – user experience is affected even by loading times lower than 400 

milliseconds which is the time a human eye takes to blink. The study goes even further to say 

that a website slower than a competitor by more than 250 milliseconds will be in danger of 

losing ground to the competition [36]. Considering that this study was published in early 2012, 

we can only imagine that those times are lower in 2023, the time this paper is being written. If 

those arguments are not enough to convince someone of the importance of a website 

performance, search engines, including Google, give significant importance to site speed when 

determining the order of appearance in the search engine results page. This has opened a new 

job position and area of expertise called SEO - standing for Search Engine Optimization. A 

SEO-expert’s job description is to make sure that the website they are representing appears 

first in the search engines for as many relevant queries as possible. 

 

With all the arguments for the importance of site speeds and performance in mind, any 

cybersecurity solution provider, especially web-related, must be careful of their product's 

impact. Thus, the performance of the ML-WAF developed during this study was also subject 

to those tests and to optimizations – with the particularly important notice that the security the 

product offers was not traded off for performance by skipping checks or coding shenanigans 

to bypass certain functions in isolated cases. The optimization was limited to extracting every 

millisecond of performance while checking and taking the needed time to provide the most 

accurate machine learning generated probability for every query analyzed. 

 

 
Figure 10 - WAF Performance Impact 

 

Figure 10 is a compilation of two screenshots taken from the Developer Tools offered by the 

Mozilla Firefox web browser. The tests were performed on the same browser, in the same 

conditions (CPU temperature, RAM memory used, free network bandwidth, internet speed, 



etc.) and on the same hardware (Apple M1 16GB MacBook Pro – running on macOS Ventura 

13.1). A difference of only 14ms difference was detected when proxying a simple GET request 

for the example.com website – a website “reserved by the Internet Assigned Numbers 

Authority (IANA) at the direction of the Internet Engineering Task Force (IETF) as special-

use domain names for documentation purposes” [37]. It is important to state that no SEO 

optimization techniques or development techniques were used in order to manipulate any of 

the times in the benchmarks. The techniques talked about are HTTP caching, using CDNs, 

optimizing images, minifying CSS and JavaScript files, prefetching etc. 

 

 

Scenario/Times Finish DOMContentLoaded Load 

Without WAF 2570 ms 851 ms 852 ms 

With WAF 2730 ms 950 ms 1040 ms 

Difference +160 ms +99 ms +188 ms 

Figure 11 - YouTube Performance Impact 

  

 

 

The test was also taken against a heavier website just to show that the WAF handles any type 

of web applications not just a simple HTML website. The heavy website tested was 

youtube.com and the differences were again insignificant. Figure 11 is a table that charts the 

times for both scenarios (with and without WAF) and the difference – meaning the impact of 

the WAF. The differences remain proportionally small as no difference passes the 22% margin. 

From those two tests we can affirm that the impact of the WAF grows linearly with the normal 

loading time. This is especially important as this means that very heavy applications or 

operations such as uploading and downloading large files will not suffer an exponentially 

growing waiting time when passing through the Web Application Firewall. 

 

 

 

 

 

 

 

 

 

  



6.  Conclusions 
 

As it was mentioned in the introduction, the purpose of this paper was to offer a technical 

knowledge baseline to anyone who wants to build a cybersecurity solution that employs 

machine learning algorithms to boost its performance. 

 

After reading this paper the added value the reader will have is that of a high-level 

understanding regarding the decisions that are to be taken along the development process, the 

architecture and components needed and the knowledge of evaluating and understanding the 

results obtained. This high-level understanding is obtained by following along the thought-

process documented during this implementation and finding the problems encountered by me 

before encountering them themselves. 

 

This architecture and technical design could be used in production at a below-average to 

average infrastructure (web application and network). Regarding the implementation, however, 

there are many improvements that can be made to the solution presented and certain notches 

that can be slightly altered to fit needs. I trust, however, that the presented configuration is a 

stable and trustworthy foundation to be built on to achieve reliable software production. The 

improvements that can be built upon are implementing a better machine learning training 

workflow, for example having a learning mode phase where the WAF ingests all the traffic and 

the requests are manually labeled as malicious or normal by actual humans (employees, 

developers, network engineers etc.). Another improvement that can be implemented is having 

a control center where humans can whitelist or blacklist certain requests, thus not relying only 

on autonomous learning and improving the machine learning engine. 

 

The biggest limitation of the study conducted was the lack of high-quality training data. 

Arguably, the most important factor in building a machine learning model is the amount and 

quality of the training dataset, as there is a positive linear relationship between the data quality 

and the model quality.  

 

I would like to end this paper by stating that it is our responsibility as researchers and 

cybersecurity professionals to not only keep up with the pace of threat actors but to also 

outsmart them by building better, more secure, more performant security solutions and I have 

faith that every single small improvement that we can bring in the community makes it 

stronger. 
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